Simultaneous detection of changes in perfusion and BOLD contrast.

نویسنده

  • C Schwarzbauer
چکیده

A new functional magnetic resonance imaging (fMRI) technique for simultaneous detection (SIDE) of changes in perfusion and blood oxygenation level dependent (BOLD) contrast is described. Perfusion contrast is generated by using magnetically labeled endogenous water proton spins as a freely diffusible tracer. A single slice-selective inversion pulse is combined with dual echo echo-planar imaging to generate a spin-echo (SE) image sensitive to changes in perfusion and a gradient-echo (GE) image sensitive to changes in both perfusion and BOLD contrast. The SIDE technique was applied to detect functional changes induced by a visual search task. A theoretical analysis is provided to calculate quantitative maps of changes in cerebral blood flow (DeltaCBF) and effective transverse relaxation time (DeltaT(2)*) from the corresponding signal changes in the SE and GE images. Since SE an GE images are generated from the same longitudinal magnetization, no errors due to spatial or temporal mismatch can arise in the quantification of DeltaCBF and DeltaT(2)*.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An investigation of the relationship between BOLD and perfusion signal changes during epileptic generalised spike wave activity.

In pathological conditions interpretation of functional magnetic resonance imaging (fMRI) results can be difficult. This is due to a reliance on the assumed coupling between neuronal activity and changes in cerebral blood flow (CBF) and oxygenation. We wanted to investigate the coupling between blood oxygen level dependant contrast (BOLD) and CBF time courses in epilepsy patients with generalis...

متن کامل

To smooth or not to smooth? ROC analysis of perfusion fMRI data.

Blood oxygenation level dependent (BOLD) contrast has been widely used for visualizing regional neural activation. Temporal filtering and parameter estimation algorithms are generally used to account for the intrinsic temporal autocorrelation present in BOLD data. Arterial spin labeling perfusion imaging is an emerging methodology for visualizing regional brain function both at rest and during ...

متن کامل

Towards reliable myocardial blood-oxygen-level-dependent (BOLD) CMR using late effects of regadenoson with simultaneous 13n-ammonia pet validation in a whole-body hybrid PET/MR system

Background BOLD CMR is a non-contrast approach for examining myocardial perfusion but despite major technical advancements to date, its reliability remains weak. A key reason for this is the unpredictable cardiac motion during stress, which can lead to pronounced artifacts that confound/ mask the true BOLD signal changes during hyperemia. Recently, regadenoson has become the vasodilator of choi...

متن کامل

Resolution and reproducibility of BOLD and perfusion functional MRI at 3.0 Tesla.

Visual and somatosensory activation studies were performed on normal subjects to compare the spatial discrimination and reproducibility between functional MRI (fMRI) methods based on blood oxygen level-dependent (BOLD) and perfusion contrast. To allow simultaneous measurement of BOLD and perfusion contrast, a dedicated MRI acquisition technique was developed. Repeated experiments of sensory sti...

متن کامل

Nonlinear temporal dynamics of the cerebral blood flow response.

The linearity of the cerebral perfusion response relative to stimulus duration is an important consideration in the characterization of the relationship between regional cerebral blood flow (CBF), cerebral metabolism, and the blood oxygenation level dependent (BOLD) signal. It is also a critical component in the design and analysis of functional neuroimaging studies. To study the linearity of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NMR in biomedicine

دوره 13 1  شماره 

صفحات  -

تاریخ انتشار 2000